Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Jaya Wijaya
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
T39507
UI - Tesis Membership  Universitas Indonesia Library
cover
Salsya Thabrani
"Teknologi panel surya terapung yang diterapkan di Danau Mahoni Universitas Indonesia merupakan panel surya bifacial. Namun penutupan badan air oleh solar panel terapung dapat menyebabkan perubahan kualitas air secara temporal. Sejauh ini, belum terdapat penelitian lebih lanjut mengenai pengaruh solar panel terapung di perairan Indonesia. Maka dari itu, penelitian ini bertujuan untuk mencari pengaruh penutupan permukaan danau terutama pada produktivitas primer, COD, dan BOD serta hubungan produktivitas primer dengan BOD dan COD. Pengambilan sampel air dilakukan pada permukaan air, sedangkan perhitungan produktivitas primer menggunakan metode botol terang-gelap dan dilakukan inkubasi selama 3 jam. Secara temporal, nilai BOD, COD, dan produktivitas primer di bawah solar panel terapung, yang selanjutnya akan disebut titik 1, memiliki nilai kosentrasi yang lebih rendah dibandingkan dengan yang berada di lokasi yang terbuka, yang selanjutnya akan disebut titik 2. Rata-rata kosentrasi BOD di titik 1 yaitu 4.25 mg/l dan titik 2 yaitu 1.56 mg/l. Adapun rata-rata kosentrasi COD di titik 1 adalah 31.875 mg/l dan titik 2 adalah 33.125 mg/l. Sementara itu, rata-rata produktivitas primer titik 1 yaitu 36.46 mg C/m3/jam dan titik 2 yaitu 114.58 mg C/m3/jam. Hasil analisis uji independen t menunjukkan adanya penurunan yang signifikan pada nilai BOD dan produktivitas primer di area yang tertutup solar panel. Sedangkan, nilai COD tidak memiliki perbedaan yang signifikan antara kedua titik. Adapun hasil uji korealasi Pearson’s menunjukkan bahwa produktivitas primer tidak memiliki hubungan yang signifikan terhadap parameter BOD dan COD. Maka dari itu penutupan area badan air dengan solar panel terapung menurunkan kualitas air Danau Mahoni terutama pada parameter BOD, COD, dan produktivitas primer.
The technology of floating photovoltaic applied at Lake of Mahoni, University of Indonesia were bifacial photovoltaic. However, its body of water which was covered by the floating photovoltaic could cause temporal changes in water quality. To date, there had been no further research on the effects of floating photovoltaic in the waters of Indonesia. Therefore, this research aimed to explore the effects of the covered lake surface especially on primary productivity, COD and BOD, also examined how primary productivity was related to BOD and COD. Water sampling was carried out on the surface of the water, meanwhile the primary productivity was calculated utilizing the method of light-dark bottle and incubated for 3 hours. Temporarily, the values of BOD, COD, and primary productivity under the floating photovoltaic, hereinafter referred to as station 1, had lower concentration values compared to those in open areas, hereinafter referred to as station 2. The average BOD concentration at station 1 was 4.25 mg/l and at station 2 was 1.56 mg/l. As for the average COD concentration at station 1 was 31.875 mg/l and at station 2 was 33.125 mg/l. Meanwhile, the average primary productivity at station 1 was 36.46 mg C/m3/hour and at station 2 was 114.58 mg C/m3/hour. The results of independent t test showed a significant decrease in the values of BOD and primary productivity in areas covered by floating photovoltaic. Meanwhile, the values of COD did not show a significant difference between the two stations. As for the results of the Pearson's correlation test suggest that primary productivity did not have a significant relationship with the parameters of BOD and COD. Therefore, covered body of water by floating photovoltaic reduced the water quality at Lake of Mahoni, especially in the parameters of BOD, COD, and primary productivity."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eldia Anggidenia
"[ABSTRAK
Penelitian mengenai potensi makroalga alami Sargassum polycystum dan makroalga budidaya Eucheuma cottonii dalam menyerap dan menyimpan karbon serta nutrien di Pulau Panjang, Teluk Banten telah dilakukan pada bulan Oktober hingga November 2014. Penelitian bertujuan untuk mengetahui laju penyerapan karbon, kandungan nutrien dan produktivitas primer dari makroalga S. polycystum dan E. cottonii. Lokasi penelitian terletak di bagian hamparan gosong karang dan berlumpur dengan kedalaman 0,5-5 m. Pengamatan pertumbuhan dan laju penyerapan karbon menggunakan metode penandaan thallus pada 30 sampel makroalga setiap hari selama 7 hari. Sampel makroalga selanjutnya dianalisis kandungan nutriennya. Hasil penelitian didapatkan estimasi laju penyerapan karbon S. polycystum dan E. cottonii adalah 0,0081 gC/hari dan 0,0083 gC/hari. Kandungan karbon, nitrogen dan fosfat di S. polycystum adalah sebanyak 6,84%, 1,72% and 0,009% sedangkan kadar karbon, nitrogen dan fosfat di E. cottonii adalah 5,99%, 0,67% dan 0,006%. Berdasarkan analisis statistik dengan uji t, terdapat perbedaan yang signifikan pada laju pertumbuhan, kandungan nitrogen dan fosfat S. polycystum dengan E. cottonii. Sedangkan untuk kandungan karbon tidak terdapat perbedaan yang signifikan antara S. polycystum dengan E. cottonii. Selanjutnya, uji korelasi didapatkan bahwa adanya korelasi antara laju pertumbuhan S. polycystum dan E. cottonii dengan kandungan nitrogen masing- masing sedangkan antara laju pertumbuhan dengan kandungan karbon dan fosfat tidak terdapat korelasi. Produktivitas primer diukur dengan metode botol terang dan botol gelap yang dimodifikasi. Pengukuran produktivitas primer dilakukan pada kedalaman 0,5 m untuk S. polycystum dan 0,1 m untuk E. cottonii. Kandungan oksigen terlarut diukur dengan DO meter. Hasil penelitian didapatkan rata-rata produktivitas primer S. polycystum sebesar 512,99 ± 169,26 mgC/m3/hari dan E. cottonii sebesar 387,88 ± 219,93 mgC/m3/hari.

ABSTRAK
The research about the potency of wild macroalgae Sargassum polycystum dan cultivation macroalgae Eucheuma cottonii to absorb and store carbon also nutrient in Panjang Island, Banten Bay was held on October until November 2014. The research was aimed to estimate carbon sequestration, nutrient content and primary productivity from macroalgae S. polycystum and E. cottonii. Location of the research in the stretch of reef and muddy with a depth of 0,5-5 m. The observation of growth rate and carbon sequestration used thallus marking method in 30 macroalgae shoots everyday for 7 days. Macroalgae was analyzed its nutrient content. The results showed that estimation carbon sequestration by S. polycystum and E. cottonii were 0,0081 gC/day dan 0,0083 gC/day. The content of carbon, nitrogent and phosphor for Macroalgae S. polycystum were 6,84%, 1,72% and 0,009% respectively while the content of carbon, nitrogent and phosphor for Macroalgae E. cottonii were 5,99%, 0,67% dan 0,006% respectively. Based on statistical analysis by t test, there was found significant difference on the growth rate, nitrogent and phosphor content of S. polycystum with E. cottonii. While for the carbon content, there was no significant difference between S. polycystum with E. cottonii. Furthermore, correlation test showed that there was a correlation between the growth rate of S. polycystum and E. cottonii with nitrogent content respectively while between the growth rate with carbon and phosphor content, there was no correlation. Primary productivity were measured by the light and dark bottle method with modification. Measurement of primary productivity was held at a depth of 0,5 m from the surface for S. polycystum and 0,1 m from the surface for E. cottonii. Dissolved oxygen was measured by DO meter. The result showed that mean of primary productivity for S. polycystum was 512,99 ± 169,26 mgC/m3/day and E. cottonii was 387,88 ± 219,93 mgC/m3/day.;The research about the potency of wild macroalgae Sargassum polycystum dan cultivation macroalgae Eucheuma cottonii to absorb and store carbon also nutrient in Panjang Island, Banten Bay was held on October until November 2014. The research was aimed to estimate carbon sequestration, nutrient content and primary productivity from macroalgae S. polycystum and E. cottonii. Location of the research in the stretch of reef and muddy with a depth of 0,5-5 m. The observation of growth rate and carbon sequestration used thallus marking method in 30 macroalgae shoots everyday for 7 days. Macroalgae was analyzed its nutrient content. The results showed that estimation carbon sequestration by S. polycystum and E. cottonii were 0,0081 gC/day dan 0,0083 gC/day. The content of carbon, nitrogent and phosphor for Macroalgae S. polycystum were 6,84%, 1,72% and 0,009% respectively while the content of carbon, nitrogent and phosphor for Macroalgae E. cottonii were 5,99%, 0,67% dan 0,006% respectively. Based on statistical analysis by t test, there was found significant difference on the growth rate, nitrogent and phosphor content of S. polycystum with E. cottonii. While for the carbon content, there was no significant difference between S. polycystum with E. cottonii. Furthermore, correlation test showed that there was a correlation between the growth rate of S. polycystum and E. cottonii with nitrogent content respectively while between the growth rate with carbon and phosphor content, there was no correlation. Primary productivity were measured by the light and dark bottle method with modification. Measurement of primary productivity was held at a depth of 0,5 m from the surface for S. polycystum and 0,1 m from the surface for E. cottonii. Dissolved oxygen was measured by DO meter. The result showed that mean of primary productivity for S. polycystum was 512,99 ± 169,26 mgC/m3/day and E. cottonii was 387,88 ± 219,93 mgC/m3/day.;The research about the potency of wild macroalgae Sargassum polycystum dan cultivation macroalgae Eucheuma cottonii to absorb and store carbon also nutrient in Panjang Island, Banten Bay was held on October until November 2014. The research was aimed to estimate carbon sequestration, nutrient content and primary productivity from macroalgae S. polycystum and E. cottonii. Location of the research in the stretch of reef and muddy with a depth of 0,5-5 m. The observation of growth rate and carbon sequestration used thallus marking method in 30 macroalgae shoots everyday for 7 days. Macroalgae was analyzed its nutrient content. The results showed that estimation carbon sequestration by S. polycystum and E. cottonii were 0,0081 gC/day dan 0,0083 gC/day. The content of carbon, nitrogent and phosphor for Macroalgae S. polycystum were 6,84%, 1,72% and 0,009% respectively while the content of carbon, nitrogent and phosphor for Macroalgae E. cottonii were 5,99%, 0,67% dan 0,006% respectively. Based on statistical analysis by t test, there was found significant difference on the growth rate, nitrogent and phosphor content of S. polycystum with E. cottonii. While for the carbon content, there was no significant difference between S. polycystum with E. cottonii. Furthermore, correlation test showed that there was a correlation between the growth rate of S. polycystum and E. cottonii with nitrogent content respectively while between the growth rate with carbon and phosphor content, there was no correlation. Primary productivity were measured by the light and dark bottle method with modification. Measurement of primary productivity was held at a depth of 0,5 m from the surface for S. polycystum and 0,1 m from the surface for E. cottonii. Dissolved oxygen was measured by DO meter. The result showed that mean of primary productivity for S. polycystum was 512,99 ± 169,26 mgC/m3/day and E. cottonii was 387,88 ± 219,93 mgC/m3/day., The research about the potency of wild macroalgae Sargassum polycystum dan cultivation macroalgae Eucheuma cottonii to absorb and store carbon also nutrient in Panjang Island, Banten Bay was held on October until November 2014. The research was aimed to estimate carbon sequestration, nutrient content and primary productivity from macroalgae S. polycystum and E. cottonii. Location of the research in the stretch of reef and muddy with a depth of 0,5-5 m. The observation of growth rate and carbon sequestration used thallus marking method in 30 macroalgae shoots everyday for 7 days. Macroalgae was analyzed its nutrient content. The results showed that estimation carbon sequestration by S. polycystum and E. cottonii were 0,0081 gC/day dan 0,0083 gC/day. The content of carbon, nitrogent and phosphor for Macroalgae S. polycystum were 6,84%, 1,72% and 0,009% respectively while the content of carbon, nitrogent and phosphor for Macroalgae E. cottonii were 5,99%, 0,67% dan 0,006% respectively. Based on statistical analysis by t test, there was found significant difference on the growth rate, nitrogent and phosphor content of S. polycystum with E. cottonii. While for the carbon content, there was no significant difference between S. polycystum with E. cottonii. Furthermore, correlation test showed that there was a correlation between the growth rate of S. polycystum and E. cottonii with nitrogent content respectively while between the growth rate with carbon and phosphor content, there was no correlation. Primary productivity were measured by the light and dark bottle method with modification. Measurement of primary productivity was held at a depth of 0,5 m from the surface for S. polycystum and 0,1 m from the surface for E. cottonii. Dissolved oxygen was measured by DO meter. The result showed that mean of primary productivity for S. polycystum was 512,99 ± 169,26 mgC/m3/day and E. cottonii was 387,88 ± 219,93 mgC/m3/day.]"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ana Jauhara
"[ABSTRAK
Telah dilakukan penelitian mengenai tingkat serapan karbon dan
kandungan klorofil serta analisis sampah, sedimen, dan volume di lima situ
Kampus UI Depok. Penelitian bertujuan untuk menganalisis tingkat serapan
karbon dan kandungan klorofil, serta materi organik dalam sampah, sedimen dan
volume di lima situ Kampus UI Depok. Penelitian dilakukan di lima situ Kampus
UI Depok, yaitu Situ Agathis, Situ Mahoni, Situ Puspa, Situ Ulin, dan Situ Salam.
Pengambilan sampel dilakukan pada bulan Maret--April 2014. Pengukuran
produktivitas primer perairan menggunakan metode botol gelap-terang. Botol
gelap dan botol terang diletakkan pada kedalaman 0 cm, 10 cm, 30 cm, 50 cm, 70
cm, dan 80 cm. Pengambilan sampel fitoplankton dilakukan menggunakan
plankton net. Pengukuran kandungan klorofil-a dan klorofil-b menggunakan
spektrofotometer dengan panjang gelombang 750, 664, 647 dan 630 nm.
Perangkap sampah organik berupa kain nylon dengan ukuran pori 1 mm2
diletakkan pada inlet dan outlet secara bersamaan di lima situ Kampus UI Depok.
Pengambilan sampel sedimen dilakukan menggunakan Peterson Grab. Sampel
sedimen dianalisis kadar karbon organik dengan metode Walkley-Black. Metode
3D Analyst ArcView 10.1 digunakan untuk menghitung volume situ. Tingkat
serapan karbon di lima situ Kampus UI Depok memiliki potensi menyerap karbon
rata-rata sebesar 48,61 mgC/m3/jam. Kandungan klorofil-a dan klorofil-b di lima
situ Kampus UI Depok rata-rata sebesar 2,59 mg/l dan 0,35 mg/l. Hasil
identifikasi sampel fitoplankton diperoleh empat kelas, yaitu Chlorophyceae,
Cyanophyceae, Euglenophyceae, dan Bacillariophyceae. Kepadatan tertinggi dan
nilai dominansi tertinggi pada sampel fitoplankton di lima situ Kampus UI Depok
terdapat pada kelas Chlorophyceae. Terjadi penumpukan sampah organik sebesar
0,55 gr/m3/jam. Tipe sedimen pasir mendominasi di perairan lima situ Kampus UI
Depok. Kandungn karbon pada sampel sedimen kerikil sebesar 19,75--26,58 ppm,
pasir sebesar 28,47--38,55 ppm, dan lumpur sebesar 36,79--42,05 ppm. Perairan
lima situ di Kampus UI Depok memiliki potensi dalam menampung volume air
sebesar 654.830 m3.

ABSTRACT
Research has conducted about the level of carbon uptake and chlorophyll
content as well as the analysis of trash, sediment, and volume in five lakes at
Campus UI Depok. The study aimed to analyze the level of carbon uptake and
chlorophyll content, and organic matter in the litter, sediment and volume in five
lakes at Campus UI Depok. The study was conducted in five lakes at Campus UI
Depok, namely Agathis, Mahoni, Puspa, Ulin, and Salam. Sampling was
conducted in March-April 2014. Measurements of primary productivity in the
water using light-dark bottle method. Dark bottle and light bottle placed at a depth
of 0 cm, 10 cm, 30 cm, 50 cm, 70 cm, and 80 cm. Sampling of phytoplankton was
conducted using a plankton net. Measurement of chlorophyll-a and chlorophyll-b
using a spectrophotometer with a wavelength of 750, 664, 647 and 630 nm.
Pitfalls of organic waste in the form of nylon fabric with a pore size of 1 mm2
placed at the inlet and outlet simultaneously in five lakes at Campus UI Depok.
Sampling of sediment was conducted using a Peterson Grab. Sediment samples
were analyzed with the organic carbon content of the Walkley-Black method. 3D
Analyst ArcView 10.1 method used to calculate the volume of the lakes. The rate
of carbon uptake in five UI Depok it has the potential to absorb carbon by an
average of 48.61 mgC/m3/hour. The content of chlorophyll-a and chlorophyll-b in
five lakes at Campus UI Depok was average of 2.59 mg/l and 0.35 mg/l. The
results of the identification of phytoplankton samples obtained four classes,
namely Chlorophyceae, Cyanophyceae, Euglenophyceae, and Bacillariophyceae.
The highest density and highest dominance values in samples of phytoplankton in
five lakes at Campus UI Depok contained in the class Chlorophyceae. Build up of
organic waste by 0.55 gr/m3/hour. Sand sediment types dominate in five lakes at
Campus UI Depok. Carbon content in sediment samples gravel at 19.75 to 26.58
ppm, the sand at 28.47 to 38.55 ppm, and the mud of 36.79 to 42.05 ppm. The five
lakes at Campus UI Depok has the potential to accommodate the volume of
waters at 654.830 m3.;Research has conducted about the level of carbon uptake and chlorophyll
content as well as the analysis of trash, sediment, and volume in five lakes at
Campus UI Depok. The study aimed to analyze the level of carbon uptake and
chlorophyll content, and organic matter in the litter, sediment and volume in five
lakes at Campus UI Depok. The study was conducted in five lakes at Campus UI
Depok, namely Agathis, Mahoni, Puspa, Ulin, and Salam. Sampling was
conducted in March-April 2014. Measurements of primary productivity in the
water using light-dark bottle method. Dark bottle and light bottle placed at a depth
of 0 cm, 10 cm, 30 cm, 50 cm, 70 cm, and 80 cm. Sampling of phytoplankton was
conducted using a plankton net. Measurement of chlorophyll-a and chlorophyll-b
using a spectrophotometer with a wavelength of 750, 664, 647 and 630 nm.
Pitfalls of organic waste in the form of nylon fabric with a pore size of 1 mm2
placed at the inlet and outlet simultaneously in five lakes at Campus UI Depok.
Sampling of sediment was conducted using a Peterson Grab. Sediment samples
were analyzed with the organic carbon content of the Walkley-Black method. 3D
Analyst ArcView 10.1 method used to calculate the volume of the lakes. The rate
of carbon uptake in five UI Depok it has the potential to absorb carbon by an
average of 48.61 mgC/m3/hour. The content of chlorophyll-a and chlorophyll-b in
five lakes at Campus UI Depok was average of 2.59 mg/l and 0.35 mg/l. The
results of the identification of phytoplankton samples obtained four classes,
namely Chlorophyceae, Cyanophyceae, Euglenophyceae, and Bacillariophyceae.
The highest density and highest dominance values in samples of phytoplankton in
five lakes at Campus UI Depok contained in the class Chlorophyceae. Build up of
organic waste by 0.55 gr/m3/hour. Sand sediment types dominate in five lakes at
Campus UI Depok. Carbon content in sediment samples gravel at 19.75 to 26.58
ppm, the sand at 28.47 to 38.55 ppm, and the mud of 36.79 to 42.05 ppm. The five
lakes at Campus UI Depok has the potential to accommodate the volume of
waters at 654.830 m3.;Research has conducted about the level of carbon uptake and chlorophyll
content as well as the analysis of trash, sediment, and volume in five lakes at
Campus UI Depok. The study aimed to analyze the level of carbon uptake and
chlorophyll content, and organic matter in the litter, sediment and volume in five
lakes at Campus UI Depok. The study was conducted in five lakes at Campus UI
Depok, namely Agathis, Mahoni, Puspa, Ulin, and Salam. Sampling was
conducted in March-April 2014. Measurements of primary productivity in the
water using light-dark bottle method. Dark bottle and light bottle placed at a depth
of 0 cm, 10 cm, 30 cm, 50 cm, 70 cm, and 80 cm. Sampling of phytoplankton was
conducted using a plankton net. Measurement of chlorophyll-a and chlorophyll-b
using a spectrophotometer with a wavelength of 750, 664, 647 and 630 nm.
Pitfalls of organic waste in the form of nylon fabric with a pore size of 1 mm2
placed at the inlet and outlet simultaneously in five lakes at Campus UI Depok.
Sampling of sediment was conducted using a Peterson Grab. Sediment samples
were analyzed with the organic carbon content of the Walkley-Black method. 3D
Analyst ArcView 10.1 method used to calculate the volume of the lakes. The rate
of carbon uptake in five UI Depok it has the potential to absorb carbon by an
average of 48.61 mgC/m3/hour. The content of chlorophyll-a and chlorophyll-b in
five lakes at Campus UI Depok was average of 2.59 mg/l and 0.35 mg/l. The
results of the identification of phytoplankton samples obtained four classes,
namely Chlorophyceae, Cyanophyceae, Euglenophyceae, and Bacillariophyceae.
The highest density and highest dominance values in samples of phytoplankton in
five lakes at Campus UI Depok contained in the class Chlorophyceae. Build up of
organic waste by 0.55 gr/m3/hour. Sand sediment types dominate in five lakes at
Campus UI Depok. Carbon content in sediment samples gravel at 19.75 to 26.58
ppm, the sand at 28.47 to 38.55 ppm, and the mud of 36.79 to 42.05 ppm. The five
lakes at Campus UI Depok has the potential to accommodate the volume of
waters at 654.830 m3.;Research has conducted about the level of carbon uptake and chlorophyll
content as well as the analysis of trash, sediment, and volume in five lakes at
Campus UI Depok. The study aimed to analyze the level of carbon uptake and
chlorophyll content, and organic matter in the litter, sediment and volume in five
lakes at Campus UI Depok. The study was conducted in five lakes at Campus UI
Depok, namely Agathis, Mahoni, Puspa, Ulin, and Salam. Sampling was
conducted in March-April 2014. Measurements of primary productivity in the
water using light-dark bottle method. Dark bottle and light bottle placed at a depth
of 0 cm, 10 cm, 30 cm, 50 cm, 70 cm, and 80 cm. Sampling of phytoplankton was
conducted using a plankton net. Measurement of chlorophyll-a and chlorophyll-b
using a spectrophotometer with a wavelength of 750, 664, 647 and 630 nm.
Pitfalls of organic waste in the form of nylon fabric with a pore size of 1 mm2
placed at the inlet and outlet simultaneously in five lakes at Campus UI Depok.
Sampling of sediment was conducted using a Peterson Grab. Sediment samples
were analyzed with the organic carbon content of the Walkley-Black method. 3D
Analyst ArcView 10.1 method used to calculate the volume of the lakes. The rate
of carbon uptake in five UI Depok it has the potential to absorb carbon by an
average of 48.61 mgC/m3/hour. The content of chlorophyll-a and chlorophyll-b in
five lakes at Campus UI Depok was average of 2.59 mg/l and 0.35 mg/l. The
results of the identification of phytoplankton samples obtained four classes,
namely Chlorophyceae, Cyanophyceae, Euglenophyceae, and Bacillariophyceae.
The highest density and highest dominance values in samples of phytoplankton in
five lakes at Campus UI Depok contained in the class Chlorophyceae. Build up of
organic waste by 0.55 gr/m3/hour. Sand sediment types dominate in five lakes at
Campus UI Depok. Carbon content in sediment samples gravel at 19.75 to 26.58
ppm, the sand at 28.47 to 38.55 ppm, and the mud of 36.79 to 42.05 ppm. The five
lakes at Campus UI Depok has the potential to accommodate the volume of
waters at 654.830 m3.;Research has conducted about the level of carbon uptake and chlorophyll
content as well as the analysis of trash, sediment, and volume in five lakes at
Campus UI Depok. The study aimed to analyze the level of carbon uptake and
chlorophyll content, and organic matter in the litter, sediment and volume in five
lakes at Campus UI Depok. The study was conducted in five lakes at Campus UI
Depok, namely Agathis, Mahoni, Puspa, Ulin, and Salam. Sampling was
conducted in March-April 2014. Measurements of primary productivity in the
water using light-dark bottle method. Dark bottle and light bottle placed at a depth
of 0 cm, 10 cm, 30 cm, 50 cm, 70 cm, and 80 cm. Sampling of phytoplankton was
conducted using a plankton net. Measurement of chlorophyll-a and chlorophyll-b
using a spectrophotometer with a wavelength of 750, 664, 647 and 630 nm.
Pitfalls of organic waste in the form of nylon fabric with a pore size of 1 mm2
placed at the inlet and outlet simultaneously in five lakes at Campus UI Depok.
Sampling of sediment was conducted using a Peterson Grab. Sediment samples
were analyzed with the organic carbon content of the Walkley-Black method. 3D
Analyst ArcView 10.1 method used to calculate the volume of the lakes. The rate
of carbon uptake in five UI Depok it has the potential to absorb carbon by an
average of 48.61 mgC/m3/hour. The content of chlorophyll-a and chlorophyll-b in
five lakes at Campus UI Depok was average of 2.59 mg/l and 0.35 mg/l. The
results of the identification of phytoplankton samples obtained four classes,
namely Chlorophyceae, Cyanophyceae, Euglenophyceae, and Bacillariophyceae.
The highest density and highest dominance values in samples of phytoplankton in
five lakes at Campus UI Depok contained in the class Chlorophyceae. Build up of
organic waste by 0.55 gr/m3/hour. Sand sediment types dominate in five lakes at
Campus UI Depok. Carbon content in sediment samples gravel at 19.75 to 26.58
ppm, the sand at 28.47 to 38.55 ppm, and the mud of 36.79 to 42.05 ppm. The five
lakes at Campus UI Depok has the potential to accommodate the volume of
waters at 654.830 m3.;Research has conducted about the level of carbon uptake and chlorophyll
content as well as the analysis of trash, sediment, and volume in five lakes at
Campus UI Depok. The study aimed to analyze the level of carbon uptake and
chlorophyll content, and organic matter in the litter, sediment and volume in five
lakes at Campus UI Depok. The study was conducted in five lakes at Campus UI
Depok, namely Agathis, Mahoni, Puspa, Ulin, and Salam. Sampling was
conducted in March-April 2014. Measurements of primary productivity in the
water using light-dark bottle method. Dark bottle and light bottle placed at a depth
of 0 cm, 10 cm, 30 cm, 50 cm, 70 cm, and 80 cm. Sampling of phytoplankton was
conducted using a plankton net. Measurement of chlorophyll-a and chlorophyll-b
using a spectrophotometer with a wavelength of 750, 664, 647 and 630 nm.
Pitfalls of organic waste in the form of nylon fabric with a pore size of 1 mm2
placed at the inlet and outlet simultaneously in five lakes at Campus UI Depok.
Sampling of sediment was conducted using a Peterson Grab. Sediment samples
were analyzed with the organic carbon content of the Walkley-Black method. 3D
Analyst ArcView 10.1 method used to calculate the volume of the lakes. The rate
of carbon uptake in five UI Depok it has the potential to absorb carbon by an
average of 48.61 mgC/m3/hour. The content of chlorophyll-a and chlorophyll-b in
five lakes at Campus UI Depok was average of 2.59 mg/l and 0.35 mg/l. The
results of the identification of phytoplankton samples obtained four classes,
namely Chlorophyceae, Cyanophyceae, Euglenophyceae, and Bacillariophyceae.
The highest density and highest dominance values in samples of phytoplankton in
five lakes at Campus UI Depok contained in the class Chlorophyceae. Build up of
organic waste by 0.55 gr/m3/hour. Sand sediment types dominate in five lakes at
Campus UI Depok. Carbon content in sediment samples gravel at 19.75 to 26.58
ppm, the sand at 28.47 to 38.55 ppm, and the mud of 36.79 to 42.05 ppm. The five
lakes at Campus UI Depok has the potential to accommodate the volume of
waters at 654.830 m3., Research has conducted about the level of carbon uptake and chlorophyll
content as well as the analysis of trash, sediment, and volume in five lakes at
Campus UI Depok. The study aimed to analyze the level of carbon uptake and
chlorophyll content, and organic matter in the litter, sediment and volume in five
lakes at Campus UI Depok. The study was conducted in five lakes at Campus UI
Depok, namely Agathis, Mahoni, Puspa, Ulin, and Salam. Sampling was
conducted in March-April 2014. Measurements of primary productivity in the
water using light-dark bottle method. Dark bottle and light bottle placed at a depth
of 0 cm, 10 cm, 30 cm, 50 cm, 70 cm, and 80 cm. Sampling of phytoplankton was
conducted using a plankton net. Measurement of chlorophyll-a and chlorophyll-b
using a spectrophotometer with a wavelength of 750, 664, 647 and 630 nm.
Pitfalls of organic waste in the form of nylon fabric with a pore size of 1 mm2
placed at the inlet and outlet simultaneously in five lakes at Campus UI Depok.
Sampling of sediment was conducted using a Peterson Grab. Sediment samples
were analyzed with the organic carbon content of the Walkley-Black method. 3D
Analyst ArcView 10.1 method used to calculate the volume of the lakes. The rate
of carbon uptake in five UI Depok it has the potential to absorb carbon by an
average of 48.61 mgC/m3/hour. The content of chlorophyll-a and chlorophyll-b in
five lakes at Campus UI Depok was average of 2.59 mg/l and 0.35 mg/l. The
results of the identification of phytoplankton samples obtained four classes,
namely Chlorophyceae, Cyanophyceae, Euglenophyceae, and Bacillariophyceae.
The highest density and highest dominance values in samples of phytoplankton in
five lakes at Campus UI Depok contained in the class Chlorophyceae. Build up of
organic waste by 0.55 gr/m3/hour. Sand sediment types dominate in five lakes at
Campus UI Depok. Carbon content in sediment samples gravel at 19.75 to 26.58
ppm, the sand at 28.47 to 38.55 ppm, and the mud of 36.79 to 42.05 ppm. The five
lakes at Campus UI Depok has the potential to accommodate the volume of
waters at 654.830 m3.]"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam, 2014
T42829
UI - Tesis Membership  Universitas Indonesia Library
cover
Deborah Sotya Larasati
"Instalasi solar panel terapung memberikan dampak berupa terhalangnya cahaya matahari, yang merupakan sumber energi fitoplankton untuk melakukan fotosintesis, masuk ke badan air. Perubahan dalam aktivitas fitoplankton akan memengaruhi produktivitas primer serta konsentrasi sejumlah nutrien yang terlibat. Penelitian ini bertujuan untuk menganalisis pengaruh penutupan permukaan badan air berupa solar panel terapung terhadap perubahan produktivitas primer dan konsentrasi nutrien yaitu nitrat, amonia, dan fosfat perairan, serta hubungan antara produktivitas primer dan konsentrasi tiap nutrien. Penelitian dilakukan dengan objek studi Danau Mahoni UI dengan jumlah pengambilan sampel sebanyak 8 kali dalam kurun waktu delapan minggu. Analisis data dilakukan dengan menggunakan uji parametrik independent t test dan uji korelasi Pearson's. Penutupan permukaan danau oleh solar panel terapung memberi pengaruh yang signifikan secara statistic terhadap penurunan produktivitas primer danau dengan rata-rata penurunan produktivitas primer danau -79,79%, dan pengaruh yang tidak signifikan secara statistik terhadap peningkatan konsentrasi nutrien dengan rata-rata peningkatan konsentrasi nitrat 3,45%, amonia 18,96%, dan fosfat 4,87%. Korelasi produktivitas primer dengan konsentrasi nitrat dan amonia danau lebih kuat pada keadaan tanpa penutupan permukaan danau, sementara korelasi produktivitas primer dengan konsentrasi fosfat danau lebih kuat pada keadaan dengan penutupan permukaan danau.

Floating solar panel installation has an impact of blocking the sunlight, which serves as the source of energy for phytoplankton photosynthesis, to reach the water bodies. Changes in phytoplankton activities will affect water primary productivity and the concentration of involved nutrients. This study aims to analyze the effect of covering water bodies by floating solar panel on water primary productivity and nutrients (nitrate, ammonia, phosphate) concentration changes, and the relationship between water primary productivity and each nutrient concentration. The study is carried out with Lake Mahoni UI as the study object, with 8 times sampling in the span of eight weeks. Data analysis uses independent t test and Pearson's correlation. The covering of lake by floating solar panel has statistically significant effect on the decrease of lake primary productivity with average decrease of -79,79%, and statistically insignificant effect on the increase of lake nutrient concentration with average increase of 3,45% on nitrate concentration, 18,96% on ammonia concentration, and 4,87% on phosphate concentration. The correlation between lake primary productivity and nitrate and ammonia concentration is stronger without the covering of water bodies, while the correlation between lake primary productivity and phosphate concentration is stronger with the covering of water bodies."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cahya Putri Andika
"Penutupan permukaan air menghalangi cahaya matahari yang masuk ke badan air sehingga mengganggu proses fotosintesis fitoplankton. Konsentrasi klorofil-a berpengaruh terhadap perubahan aktivitas fitoplankton yang akan mempengaruhi produktivitas primer. Tujuan dari penelitian untuk menganalisis pengaruh kedalaman terhadap produktivitas primer fitoplankton dan klorofil-a serta korelasi antar keduanya pada kondisi dengan dan tanpa adanya penutupan permukaan air. Penelitian dilakukan di Solar Panel Terapung (SPT) Danau Mahoni UI. Sampel diambil pada kedalaman 30 cm dan 60 cm pada kondisi tertutup dan kondisi terbuka. Analisis data dilakukan dengan menggunakan regresi, uji parametrik independent t test, uji korelasi Pearson dan Spearman Rho. Berdasarkan nilai rata-rata, menunjukan bahwa kedalaman air memberikan pengaruh terhadap kedua parameter. Namun, berdasarkan uji independent t test didapatkan nilai sig. (2-tailed) >0,05 bahwa tidak terdapat perbedaan nilai produktivitas primer dan konsentrasi klorofil-a yang berarti antara kedalaman 30 cm dengan kedalaman 60 cm. Hubungan produktivitas dengan klorofil-a pada kondisi tertutup menghasilkan koefisien determinasi (R2 ) sebesar 0,8, sementara kondisi terbuka menghasilkan R 2 sebesar 0,088. Hasil analisis menunjukan bahwa korelasi produktivitas primer dengan klorofil-a lebih kuat pada kondisi tertutup. Keberadaan penutupan permukaan badan air berupa solar panel terapung memberikan pengaruh yang siginifikan terhadap penurunan nilai produktivitas primer dan klorofil-a.

The closure of the water surface blocks the sunlight that enters the water body so that it interferes with the photosynthetic process of phytoplankton. The concentration of chlorophyll-a affects changes in phytoplankton activity which will affect primary productivity.The purpose of the study was to analyze the effect of depth on the primary productivity of phytoplankton and chlorophyll-a and the correlation between them in conditions with and without water surface cover. The research was conducted on the floating solar panel of Lake Mahoni UI. Samples were taken at a depth of 30 cm and 60 cm in closed and open conditions. Data analysis was performed using regression, parametric independent t test, Pearson and Spearman Rho correlation test. Based on the average value, it shows that the water depth has an effect on both parameters. However, based on the independent t test, the sig. value was obtained. (2-tailed) > 0.05 that there is no significant difference in the value of primary productivity and chlorophyll-a concentration between a depth of 30 cm and a depth of 60 cm. The relationship between productivity and chlorophyll-a in the closed condition resulted in a coefficient of determination (R2) of 0.8, while the open condition resulted in an R2 of 0.088. The results of the analysis showed that the correlation of primary productivity with chlorophyll-a was stronger in closed conditions. The existence of surface cover of water bodies in the form of floating solar panels has a significant effect on the decrease in the value of primary productivity and chlorophyll-a."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library