Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Yusuf Abraham Bismo Kristanto
"

Seiring dengan perkembangan bidang computer vision terdapat lebih banyak solusi yang dapat diimplementasikan untuk bidang sehari-hari. Salah satu bidang yang paling erat dengan kegiatan sehari-hari adalah kegiatan mengkonsumsi makanan. Dalam memperhatikan pola makan, penting dilakukan proses mengidentifikasi jenis makanan yang dikonsumsi. Dengan memanfaatkan perkembangan model machine learning deteksi objek yang bekerja secara waktu langsung, YOLOv5 dapat digunakan untuk melakukan deteksi objek untuk dapat mengidentifikasi berbagai jenis makanan dalam suatu gambar. Dengan menggunakan YOLOv5, deteksi terhadap makanan yang kerap kali dikonsumsi oleh masyarakat Indonesia dapat dilakukan dan ditingkatkan akurasinya dengan pemrosesan gambar hingga mencapai nilai mAP 94,3%. 

Penggunaan implementasi model ini dalam aktivitas sehari-hari dapat memberikan nilai tambah kepada orang-orang yang ingin lebih memahami jenis makanan yang dikonsumsinya. Dari hasil pengujian user experience yang dilakukan terhadap aplikasi, hasil perbandingan terhadap benchmark mengindikasikan bahwa aplikasi memiliki kualitas penggunaan di atas rata-rata dengan nilai 1,37 untuk daya tarik, 1,58 untuk kejelasan, 1,23 untuk efisiensi, 1,38 untuk ketepatan, 1,13 untuk stimulasi, dan 1,01 untuk kebaruan.

With the advent of computer vision there are more solutions that can be implemented in everyday life. One of the areas most closely related to daily activities is the activity of consuming food. In paying attention to diet, it is important to identify the type of food consumed. By leveraging the development of object detection machine learning models that work in real time, YOLOv5 can be used to perform object detection to identify different foods within a single image. By using YOLOv5, detection of foods that are often consumed by Indonesian people can be carried out and the accuracy is increased by image processing up to a value of mAP 94.3%.
The use of this model's implementation in daily activities can provide added value to people who want to better understand the types of food they consume. From the results of user experience testing carried out on the object detection application, the results of comparisons against benchmarks indicate that the application has above average usage quality with a value of 1.37 for attractiveness, 1.58 for clarity, 1.23 for efficiency, 1.38 for accuracy, 1.13 for stimulation, and 1.01 for novelty.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Ihsan Pratama
"Seiring berkembangnya teknologi informasi yang mulai merambah ke sektor ekonomi menyebabkan banyak bermunculan penyedia layanan dompet digital di Indonesia. DOKU sebagai salah satu penyedia layanan dompet digital ingin terus berinovasi untuk meningkatkan kepuasan pelanggan. Proses verifikasi data diri yang membutuhkan waktu lama karena harus dilakukan secara manual kini menjadi persoalan. Fokus penelitian ini adalah untuk mengembangkan sebuah aplikasi mobile cross platform yang dapat
digunakan untuk mengekstrak data dari gambar kartu idenitas pengguna DOKU agar proses verifikasi data dapat dilakukan secara otomatis.
Arsitektur dari aplikasi terdiri dari aplikasi mobile menggunakan Flutter dan webservice menggunakan Flask. Proses ekstraksi data dari gambar kartu identitas dilakukan menggunakan Tesseract-OCR. Hasil ekstraksi data akan diprediksi menggunakan model LSTM untuk dapat dilakukan verifikasi lanjutan. Hasil eksperimen menunjukkan akurasi pengenalan karakter dari gambar kartu identitas sebesar 77.45% dan akurasi prediksi kategori sebesar 88%. Dengan demikian aplikasi ini dapat digunakan
untuk menyelesaikan masalah verifikasi data pengguna.

The development of information technology has penetrated the economic sector causing many digital wallet service providers to appear in Indonesia. DOKU as one of the digital wallet service providers wants to innovate to increase customer satisfaction. The process of verifying personal data which takes a long time because it has to be done manually is now a problem. The focus of this research is to develop cross-platform mobile applications that can be used to extract data from DOKU user identity card images so that the data verification process can be done automatically. The application architecture consists of mobile applications using Flutter and web services using Flask. The data extraction process from the identity card image is done using Tesseract-OCR. The results of data extraction will be predicted using the LSTM model for the further verification process. The experimental results show that the accuracy of character recognition from the identity card images is 77.45% and the category prediction accuracy is 88%. Thus this application can be used to resolve user data verification issues."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library