Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 202 dokumen yang sesuai dengan query
cover
Dimas Prabu Tejonugroho
"Tingkat kegagalan perusahaan rintisan berbasis teknologi di Indonesia masih sangat tinggi. Semakin banyaknya tantangan dan ancaman disrupsi, membuat perusahaan harus merancang strategi agar perusahaan rintisan berbasis teknologi masih bisa bertahan di masa yang akan datang. Penelitian ini menghasilkan alat ukur resiliensi organisasi yang dapat digunakan perusahaan untuk merancang strategi keberlanjutan organisasi. Penelitian ini menghasilkan 12 variabel dimensi kemampuan organisasi dan 9 variabel dimensi kerentanan organisasi yang valid dan reliabel untuk digunakan. Pengukuran resiliensi organisasi yang dilakukan dengan alat ukur ini menunjukkan kondisi resiliensi organisasi pada perusahaan rintisan berbasis teknologi di Indonesia masih ada dalam kondisi Buruk dan diperlukan strategi agar kerentanan perusahaan dapat diturunkan.

The failure rate of new technology-based firms in Indonesia is still quite high. The future business environment is more challenging dan disruptive, so the new technology-based firms in Indonesia need develop strategy to be sustain and viable in business. This research aims to develop resilience measurement tool which can be used by organization to develop strategy to be sustain in the future. 12 variable of organization vulnerability dimension and 9 variable of organization capability proved valid and reliable to be used. Based on this measurement tool, the resilience profiling of new technology-based firms in Indonesia are in Bad conditions, and there are needs to develop strategy so the vulnerability can be decreased."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T55065
UI - Tesis Membership  Universitas Indonesia Library
cover
Fannisa Rahma Haqqi
"Kehadiran Fintech sebagai layanan keuangan yang inovatif dan distruptive dapat meningkatkan efisiensi melalui penerapan teknologi. Kehadiran Fintech di Indonesia dinilai memiliki beragam manfaat bagi perekonomian negara dan juga mampu membuka lapangan pekerjaan baru. Dukurngan pemerintah terhadap peran Fintech dalam meningkatkan inklusi keuangan nasional mendorong tumbuhnya Fintech di Indonesia. Namun, tingkat adopsi Fintech di Indonesia masih relatif rendah jika dibandingkan dengan negara-negara lain di Asia. Tujuan penelitian ini adalah untuk merancang rekomendasi strategi pengembangan layanan Fintech guna meningkatkan niat pengguna untuk mengadopsi layanan Fintech. Penelitian ini menggunakan model konseptual yang berbasis pendekatan risiko-manfaat yang diadaptasi berdasarkan theory of reasoned action, theory of planned behavior dan technology acceptance model. Berdasarkan data empiris yang dikumpulkan dari 100 orang responden yang menggunakan layanan Fintech. Metode Partial Least Square (PLS-SEM) digunakan untuk memperkirakan hubungan antara konstruk. Hasil SEM menunjukkan bahwa faktor trust, economic benefit dan convenience terbukti secara signifikan mempengaruhi pengguna untuk mengadopsi layanan Fintech, sementara faktor privacy awareness, financial risk dan legal risk terbukti secara signifikan memengaruhi trust pengguna. Berdasarkan hasil tersebut, 14 rekomendasi strategi diajukan dan dinilai oleh para ahli yang berkecimpung di dunia Fintech di Indonesia. Penilaian strategi dilakukan dengan integrasi metode IPA-Kano dimana strategi mengenai perlindungan konsumen terhadap ancaman keamanan dan kerugian finansial menempati priotitas tertinggi, diikuti dengan penawaran promo dan diskon pada urutan priotitas kedua dan penguatan aspek positif layanan melalui iklan dan promosi berada pada urutan ketiga.

The presence of Fintech as an innovative and distruptive financial service can improve efficiency through the application of technology. The presence of Fintech in Indonesia is considered to have a variety of benefits for the country's economy and is also capable of reducing the unemployment rate. The government's support for Fintech's role in increasing national financial inclusion drives Fintech's growth in Indonesia. However, the adoption rate of Fintech in Indonesia is still relatively low when compared to other countries in Asia. The purpose of this study is to design strategies recommendations for Fintech service development to increase user intentions to adopt Fintech services. This study uses a conceptual model based on a risk-benefit approach that is adapted based on theory of reasoned action, theory of planned behavior and technology acceptance models. Based on empirical data collected from 100 respondents who used Fintech services. The Partial Least Square (PLS-SEM) method is used to estimate the relationship between constructs. SEM results show that trust, economic benefit and convenience are proven to significantly influence users to adopt Fintech services, while privacy awareness, financial risk and legal risk factors are proven to significantly affect user trust. Based on these results, 14 strategic recommendations were submitted and assessed by experts of Fintech in Indonesia. The strategy assessment is carried out by the integration of the IPA-Kano method where the strategy regarding consumer protection against security threats and financial losses occupies the highest priority, followed by promotion offers and discounts in the second priority sequence and strengthening positive aspects of services through advertising and promotions are ranked third."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fairuz Nawfal Hamid
"ABSTRAK
Sebagai negara dengan pemain mobile game terbesar di Asia Tenggara, Indonesia merupakan negara yang sangat potensial bagi perusahaan pengembang game untuk memproduksi dan mempromosikan produk mereka. Tetapi kenyataannya perusahaan pengembang game lokal Indonesia masih kesulitan untuk bersaing dengan perusahaan luar untuk mendapatkan loyalitas pengguna. Tujuan dari penelitian ini adalah untuk merancang rekomendasi strategi untuk diimplementasikan oleh perusahaan pengembang game lokal agar dapat mendorong pemain game Indonesia untuk memainkan game-game asal Indonesia secara berkelanjutan dan melakukan pembayaran dalam aplikasi game tersebut. Pada penelitian ini, sebuah konseptual model dikembangkan berdasarkan theory of perceived values dan confirmation theory yang dievaluasi menggunakan kuesioner online. Analisis data dan uji hipotesis dilakukan dengan metode PLS-SEM. Hasilnya menunjukkan game quality, game social aspect, and monetary value secara positif mempengaruhi keinginan penggunaan berkelanjutan, di mana hanya game quality dan monetary value yang secara signifikan mendorong keinginan pembelian item dalam game. Berdasarkan hasil ini, 13 rekomendasi strategi diajukan dan dinilai oleh para expert dan perwakilan komunitas yang terkait dengan game di Indonesia. Penilaian strategi-strategi tersebut dilakukan dengan metode importance-performance analysis dan TOPSIS. Berdasarkan kedua metode tersebut, strategi yang berkaitan dengan kualitas gameplay, pengembangan karakter, dan harga item dalam game berada pada urutan peringkat prioritas tertinggi.

ABSTRACT
Indonesia, as the country with the highest number of game players in South East Asia, is very potential for mobile game developers to produce and promote their game products. Nevertheless, local mobile developers still struggle to compete for Indonesian user's loyalty. The purposes of this study are to design strategy recommendations for local developer companies to drive Indonesian gamers to continuously play mobile games and make in-app purchases of items in the mobile game product. This study develops a conceptual model based on theory of perceived values and expectation-confirmation theory that was evaluated with an online questionnaire. Partial Least Square (PLS) SEM method was used to analyze the data and to test the hypothesis. The SEM results show that game quality, game social aspect, and monetary value were positively influenced continuance intention, while only game quality and monetary value drive Indonesian gamers to pay for items in the game. Based on these results, 13 strategies were proposed and scored by experts in Indonesian mobile game industry and community representative using TOPSIS and importance-performance analysis method. Strategies related to gameplay and storyline quality, characters development, and item pricing are on the top priority rank based on those two methods."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Olivia Bunga Pongtuluran
"ABSTRAK
Teknologi ekstraksi tanaman obat yang telah umum digunakan pada industri obat herbal memiliki kekurangan dari segi efisiensi waktu ekstraksi, beban pemeliharaan alat yang tinggi, konsumsi pelarut yang banyak dan tidak hemat energi. Metode ektraksi dengan ultrasonik menawarkan suatu proses yang berdasarkan hasil dari beberapa penelitian dianggap lebih sederhana dan efisien. Proses ultrasonik dipengaruhi oleh beberapa faktor yaitu: suhu, power dan frekuensi, intensitas, waktu, preparasi, jenis pelarut, dan jumlah pelarut yang digunakan. Pada penelitian ini digunakan frekuensi 20 kHZ, amplitudo 32% dan intensitas sebesar 0,5. Desain percobaan pada penelitian ini menggunakan metode Taguchi yang mengaplikasikan model Orthogonal Array dan RSM dengan model Central Composite Design(CCD). Ada tiga variable independen dalam penelitian ini yaitu waktu, rasio pelarut terhadap sampel dan kadar etanol, dimana masing- masing memiliki 3 level dan respon dari penelitian ini diukur dari persentase yield yang dihasilkan, banyaknya kandungan total fenol dan total flavonoid yang terdapat dalam ekstrak.  Hasil penelitian menunjukkan bahwa semakin tinggi kadar etanol, semakin besar kadar total fenol dan flavonoid yang dihasilkan namun yield semakin rendah. Namun, rasio solvet yang semakin besar menghasilkan kadar yield yang tinggi, namun variabel ini tidak berpengaruh pada respon yang lain. Hasil penelitian ini juga menunjukkan bahwa faktor waktu tidak memberikan dampak yang signifikan terhadap  ketiga respon. 

ABSTRACT
The conventional medicinal plant extraction technologies that have been applied widely in herbal medicine industries neglect some matters i.e the time efficiencies, low cost maintenance, less  solvent and low energy consumption. An ultrasound- assisted extraction process which offered the modest and more effective outcome based on  several research influenced by some variables  such as temperature, power and frequency, intensity, extraction time, preparation process, type and quantity of solvent. This research used an ultrasound equipment which was set at frequency 20 kHz, amplitude 32% and the 0,5 of intensity. Moringa leaves have many chemical contents such as protein, vitamins A, B and C, beta carotene, phenolic acid, lignin, carbohydrates, fibre, and flavonoids whose pharmacological activities are as wound healing, anti-anemia, anti-inflammatory, antipyretic, analgesic, and antimicrobial. The experimental design of this research employed Taguchi method with 9 runs based on Orthogonal Array (OA) model and 40 runs of RSM experiments constructed by Central Composite Design (CCD) with 2 replications. There were 3 independent variables introduced namely extraction time, solvent-to-solid ratio, and ethanol concentration for each has 3 levels and the experiment responses are yield percentage, total phenolic content, and total flavonoid content of the extract.  The output showed that the more ethanol concentration used the more phenolic and flavonoid content generated, however the yield production decreases. On the other hand the higher the ratio creates the high yield yet this variables showing no impact towards two other responses. The result of this study also revealed that extraction time has no effect on all the responses."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Billy Muhamad Iqbal
"ABSTRAK
Tesis ini membahas kebutuhan Indonesia akan inovasi dan revitalisasi terhadap kendaraan militer yang sesuai dan mendukung kinerja TNI dalam mengamankan kedaulatan NKRI yang kaitannya dengan perbaikan dalam dunia penelitian dan pengembangan teknologi kemiliteran. Berdasarkan pada kenyataan tersebut, kebutuhan akan penggunaan kendaraan yang baik, efektif serta efisien, sesuai dengan kebutuhan dan penggunaannya, sangat diperlukan, mengingat kendaraan militer di Indonesia rata – rata adalah kendaraan lawas atau kendaraan baru yang dibeli dari luar negeri. Sehingga penelitian ini bertujuan untuk merancang sebuah instrumen Human-Machine Interface berupa dashboard dengan metode semantik pada kendaraan militer dan dievaluasi dengan metode virtual dalam rangka memaksimalkan fungsi Human-Machine Interaction pada kendaraan tersebut dalam rangka meningkatkan kinerja kendaraan militer tersebut yang pada akhirnya akan memaksimalkan kemampuan TNI dalam penggunaan salahsatu Alutsistanya.

ABSTRACT
This thesis discussed for innovation and revitalization of Indonesian military vehicles that conform to and support the performance of the military in securing the sovereignty of the Republic of Indonesia which is related to the improvement in the world of research and development of military technology. Based on this fact, the need for better use of the vehicle, effectively and efficiently, in accordance with the needs and usage, it is necessary. By the fact, the Indonesian military vehicles are commonly old or they have new vehicles but purchased from abroad. Thus this study aims to design an instrument Human-Machine Interface in the form of a dashboard with semantic methods and evaluated on military vehicles with 3D virtual methods in order to maximize the functionality of the Human-Machine Interaction in the vehicle in order to improve the performance of military vehicles, which in turn will maximize the ability of the military to use one of their main combat tools."
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41970
UI - Tesis Membership  Universitas Indonesia Library
cover
Pardamean, Patrick Theofilus
"Konsumsi energi di sektor bangunan merupakan salah satu isu yang penting tentang energi. Di Amerika Serikat, konsumsi energi pada gedung hampir 70% dari total listrik yang dihasilkan. Heating, Ventilation & Air Conditioning (HVAC) adalah bagian yang mengkonsumsi energi terbesar pada gedung di samping lighting. Pengembangan framework analisis data untuk mendukung manajemen energi di ruang exhibition diusulkan pada penelitian ini. Framework yang disulkan adalah dengan menggunakan analisis deskriptif, klasifikasi data menggunakan Classification and Regression Trees (CART), dan metode anomaly detection menggunakan generalized extreme studentized deviate (GESD). Sebuah studi kasus dilakukan di National Taiwan Science Education Center dengan mengumpulkan data konsumsi energi AC dan mengembangkan strategi manajemen aset. Hasil yang ditemukan menunjukkan bahwa konsumsi energi AC sering mengkonsumsi lebih banyak energi tepat sebelum dan sesudah pembukaan dan penutupan dari museum.

Energy consumption in buildings sector is an important issue about energy. In the US, buildings already consume almost 70% of total electricity generated. Heating, Ventilating & Air Conditioning (HVAC) is the biggest energy consumer in building beside lighting. This study proposed development a data analysis framework to support energy management in exhibition spaces. The proposed experimental framework is using descriptive analysis, data classification using classification and regression trees (CART), and anomaly detection method using generalized extreme studentized deviate (GESD). A case study was conducted in National Taiwan Science Education Center by collecting air conditioning energy consumption and developing asset management strategy. The main finding show that the air conditioning energy consumption sometimes consume more energy just right before and after the opening and closing of the museum."
Depok: Fakultas Teknik Universitas Indonesia, 2015
T47160
UI - Tesis Membership  Universitas Indonesia Library
cover
Novieka Distiasari
"ABSTRAK
Pengelompokan supplier penting untuk memberikan informasi kepada pembeli. Penelitian ini mengusulkan meta-heuristik berbasis algoritma K-modes untuk mengelompokkan dataset dalam bentuk biner. Ada dua metode metaheuristik yang digunakan dalam penelitian ini, yaitu particle swarm optimization (PSO) dan genetic algorithm (GA). Meta-heuristik yang diterapkan untuk memberikan modes awal yang lebih baik untuk algoritma K-modes. Penelitian ini menggunakan pengukuran Jaccard dalam hal pengukuran similarity dan menggunakan tiga dataset untuk memvalidasi algoritma yang diusulkan. Hasil percobaan dan hasil statistik menunjukkan bahwa PSO berbasis algoritma K-modes lebih baik dari GA berbasis algoritma K-modes. Dalam hasil evaluasi menggunakan data dari sebuah perusahaan automobile di Taiwan, PSO berdasarkan PSO berbasis algoritma K-modes memiliki SSE kecil dari pada GA berbasis algoritma K-modes.

ABSTRACT
Supplier clustering is important for providing more important information for the buyer. This study proposes meta-heuristics based K-modes algorithm for clustering binary dataset. There are two metaheuristic methods applied in this study, namely particle swarm optimization (PSO) and genetic algorithm (GA). The meta-heuristics are applied to give better initial modes for the K-modes algorithm. In terms of similarity measurement, this study uses Jaccard measurement since the real data set consists of higher number of value zero than one. In order to validate the proposed algorithms, three benchmark datasets are employed. The experiments results and statistical results show that PSO based K-modes algorithm is better than GA based K- modes algorithm. The data set from a exisibition company in Taiwan. In model evaluation results, PSO based K- modes algorithm has the SSE lowest than GA based K- modes algorithm."
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44694
UI - Tesis Membership  Universitas Indonesia Library
cover
Oktavia Ika Putri
"[ABSTRAK
Pemeriksaan kesehatan secara umum merupakan bagian yang umum dari perawatan kesehatan di beberapa negara. Jumlah permintaan layanan kesehatan di Taiwan mengalami peningkatan selama sepuluh tahun terakhir. Kenaikan permintaan tersebut didorong oleh beberapa faktor, termasuk populasi yang semakin menua, dan peningkatan jumlah kasus penyakit kronis. Fluktuasi jumlah kedatangan peserta tes kesehatan yang tidak menentu, membuat rumah sakit sulit untuk memberikan pelayanan yang memuaskan. Rumah sakit perlu membuat strategi perencanaan, seperti manajemen kesehatan untuk menangani masalah tersebut dengan cara memprediksi kedatangan peserta uji kesehatan. Aplikasi data mining dalam perawatan kesehatan adalah pembuktian bahwa data mining dapat memberikan informasi yang sangat berguna untuk semua pihak yang terlibat dalam industri kesehatan, seperti meningkatkan kualitas pelayanan rumah sakit. Penelitian ini menggunakan pengelompokan dan aturan asosiasi untuk mengetahui pola dari data pemeriksaan penyakit cerebrovascular, dengan tujuan memprediksi kedatangan kembali peserta tes kesetahan. Algoritma Apriori pembobotan dapat mengetahui hubungan antar item menggunakan nilai support, confidence, dan bobot masing-masing item sebagai tingkat prioritas dari aturan asosiasi, karakteristik aturan asosiasi dapat diketahui, yang mana hasil tersebut dapat membantu rumah sakit dalam meningkatkan kualitas pelayanan. Pada dasarnya, data memiliki partisi yang berbeda satu sama lain, atas dasar tersebut maka dalam penelitian ini dilakukan pengelompokan sebelum dilakukan penggalian informasi menggunakan aturan asosiasi, dimana proses tersebut merupakan salah satu proses yang penting. Setiap kelompok diharapkan mengandung asosiasi tanpa kontaminasi dari bagian kelompok lain yang memiliki pola hubungan yang berbeda. Penelitian ini menggunakan metode pengelompokan hirarki yang dikenal dengan Ward?s Agglomerative yang relatif sederhana untuk dipahami. Diimplementasikan, dan tidak perlu menentukan banyaknya jumlah kelompok pada awal proses.

ABSTRACT
General health examinations are common elements of health care in some country. Taiwan demand for healthcare services has increased over the past decade. The increase has been driven by several factors, including an ageing population, and the increasing prevalence of chronic disease. The fluctuation number of examinees with unpredictable coming behavior makes hospital difficult to provide the satisfying service. Hospital needs to make strategic planning such as healthcare management to solve this problem by predicting examinee coming. Data mining applications in healthcare is the realization that data mining can generate information that very useful to all parties involved in the healthcare industry, such as improving the treatment quality of hospitals. This research used clustering and association rule task to know the pattern of cerebrovascular medical examination databases to predict examinees? re-coming. The Weighted-Apriori algorithm finds out the relationships among item sets using support, confidence, and weight of each feature as the priority rank of the association rule, the characteristic of the rule can be generated, which help the hospital to improve the service quality. The data is performed on partitions that are essentially distinct from each other is the reason why clustering performs before association rule mining is one of essential process. Each cluster would be expected to contain associations without interference or contamination from other sub groupings that have different patterns of relationships. This research used hierarchical clustering method called Ward?s agglomerative which relatively simple to understand, implement, and does not need to specify number of clusters in advance.;General health examinations are common elements of health care in some country. Taiwan demand for healthcare services has increased over the past decade. The increase has been driven by several factors, including an ageing population, and the increasing prevalence of chronic disease. The fluctuation number of examinees with unpredictable coming behavior makes hospital difficult to provide the satisfying service. Hospital needs to make strategic planning such as healthcare management to solve this problem by predicting examinee coming. Data mining applications in healthcare is the realization that data mining can generate information that very useful to all parties involved in the healthcare industry, such as improving the treatment quality of hospitals. This research used clustering and association rule task to know the pattern of cerebrovascular medical examination databases to predict examinees? re-coming. The Weighted-Apriori algorithm finds out the relationships among item sets using support, confidence, and weight of each feature as the priority rank of the association rule, the characteristic of the rule can be generated, which help the hospital to improve the service quality. The data is performed on partitions that are essentially distinct from each other is the reason why clustering performs before association rule mining is one of essential process. Each cluster would be expected to contain associations without interference or contamination from other sub groupings that have different patterns of relationships. This research used hierarchical clustering method called Ward?s agglomerative which relatively simple to understand, implement, and does not need to specify number of clusters in advance.;General health examinations are common elements of health care in some country. Taiwan demand for healthcare services has increased over the past decade. The increase has been driven by several factors, including an ageing population, and the increasing prevalence of chronic disease. The fluctuation number of examinees with unpredictable coming behavior makes hospital difficult to provide the satisfying service. Hospital needs to make strategic planning such as healthcare management to solve this problem by predicting examinee coming. Data mining applications in healthcare is the realization that data mining can generate information that very useful to all parties involved in the healthcare industry, such as improving the treatment quality of hospitals. This research used clustering and association rule task to know the pattern of cerebrovascular medical examination databases to predict examinees? re-coming. The Weighted-Apriori algorithm finds out the relationships among item sets using support, confidence, and weight of each feature as the priority rank of the association rule, the characteristic of the rule can be generated, which help the hospital to improve the service quality. The data is performed on partitions that are essentially distinct from each other is the reason why clustering performs before association rule mining is one of essential process. Each cluster would be expected to contain associations without interference or contamination from other sub groupings that have different patterns of relationships. This research used hierarchical clustering method called Ward?s agglomerative which relatively simple to understand, implement, and does not need to specify number of clusters in advance., General health examinations are common elements of health care in some country. Taiwan demand for healthcare services has increased over the past decade. The increase has been driven by several factors, including an ageing population, and the increasing prevalence of chronic disease. The fluctuation number of examinees with unpredictable coming behavior makes hospital difficult to provide the satisfying service. Hospital needs to make strategic planning such as healthcare management to solve this problem by predicting examinee coming. Data mining applications in healthcare is the realization that data mining can generate information that very useful to all parties involved in the healthcare industry, such as improving the treatment quality of hospitals. This research used clustering and association rule task to know the pattern of cerebrovascular medical examination databases to predict examinees’ re-coming. The Weighted-Apriori algorithm finds out the relationships among item sets using support, confidence, and weight of each feature as the priority rank of the association rule, the characteristic of the rule can be generated, which help the hospital to improve the service quality. The data is performed on partitions that are essentially distinct from each other is the reason why clustering performs before association rule mining is one of essential process. Each cluster would be expected to contain associations without interference or contamination from other sub groupings that have different patterns of relationships. This research used hierarchical clustering method called Ward’s agglomerative which relatively simple to understand, implement, and does not need to specify number of clusters in advance.]"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44552
UI - Tesis Membership  Universitas Indonesia Library
cover
Yuliana Portti
"Penelitian ini mengusulkan tiga algoritma meta-heuristik berbasis Fuzzy K-modes untuk clustering binary data set. Ada tiga metode metaheuristik diterapkan, yaitu Particle Swarm Optimization (PSO), Genetika Algoritma (GA), dan Artificial Bee Colony (ABC). Ketiga algoritma digabungkan dengan algoritma K-modes. Tujuannya adalah untuk memberikan modes awal yang lebih baik untuk K-modes. Jarak antara data ke modes dihitung dengan menggunakan koefisien Jaccard. Koefisien Jaccard diterapkan karena dataset mengandung banyak nilai nol . Dalam rangka untuk melakukan pengelompokan set data real tentang supplier otomotif di Taiwan, algoritma yang diusulkan diverifikasi menggunakan benchmark set data. Hasil penelitian menunjukkan bahwa PSO K-modes dan GA K-modes lebih baik dari ABC K-modes. Selain itu, dari hasil studi kasus, GA K-modes memberikan SSE terkecil dan juga memiliki waktu komputasi lebih cepat dari PSO K-modes dan ABC K-modes.

This study proposed three meta-heuristic based fuzzy K-modes algorithms for clustering binary dataset. There are three meta-heuristic methods applied, namely Particle Swarm Optimization (PSO) algorithm, Genetic Algorithm (GA) algorithm, and Artificial Bee Colony (ABC) algorithm. These three algorithms are combined with k-modes algorithm. Their aim is to give better initial modes for the k-modes. Herein, the similarity between two instances is calculated using jaccard coefficient. The Jaccard coefficient is applied since the dataset contains many zero values. In order to cluster a real data set about automobile suppliers in Taiwan, the proposed algorithms are verified using benchmark data set. The experiments results show that PSO K-modes and GA K-modes is better than ABC K-modes. Moreover, from case study results, GA fuzzy K-modes gives the smallest SSE and also has faster computational time than PSO fuzzy K-modes and ABC fuzzy K-modes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44406
UI - Tesis Membership  Universitas Indonesia Library
cover
Imam Budiyono
"Penggunaan produk dalam negeri pada sektor Minyak dan Gas Bumi ditargetkan pemerintah terus meningkat sesuai dengan pertumbuhan belanja di sektor minyak dan gas bumi. Hal ini ditujukan untuk meningkatkan pertumbuhan, kemampuan dan daya saing industri dalam negeri. Peningkatan penggunaan produk dalam negeri tercermin pada capaian TKDN (Tingkat Komponen Dalam Negeri) pada industri barang dan jasa penunjang minyak dan gas bumi.
Pada penelitian ini dilakukan analisis faktor yang mempengaruhi peningkatan capaian TKDN. Faktor-faktor yang bisa mempengaruhi peningkatan capaian TKDN telah diidentifikasi. Metode Structural Equation Modelling (SEM) digunakan untuk menganalisis hubungan dan pengaruh antar faktor. Telah dilakukan wawancara terstruktur dan Focus Group Discussion (FGD) dengan pakar dibidang TKDN.
Penelitian ini menghasilkan sebelas hipotesa atas faktor-faktor yang mempengaruhi peningkatan TKDN yaitu kebijakan, peran pemerintah, peran KKKS, kemampuan industri, infrastruktur pendukung dan peningkatan TKDN.

The use of domestic products in the oil and gas sector targeted by the government continue to increase regarding oil and gas sector expenditure. It is intended to enhance the growth, capabilities and competitiveness of domestic industries. Increased use of domestic products is reflected on the achievements of local content in industrial goods and services supporting the oil and gas.
In this research, performed the analysis of factors affecting the increasing of local content. Factors that could affect improvement of local content has been identified. Structural Equation Modelling (SEM) was used to analyze the relationship and influence between factors. Researchers have conducted structured interviews and Focus Group Discussion (FGD) by local content experts in the oil & gas sector.
This research resulted in eleven hypotheses on the factors affecting the increase in local content : policy, the role of government, the role of oil companies, the ability of the industry, supporting infrastructure and improvement of local content.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44428
UI - Tesis Membership  Universitas Indonesia Library
<<   3 4 5 6 7 8 9 10 11 12   >>